3.283 \(\int \frac{\sec ^5(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=321 \[ -\frac{\sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}} \text{EllipticF}\left (\sin ^{-1}(\sin (e+f x)),\frac{a}{a+b}\right )}{3 b f (a+b) \sqrt{\cos ^2(e+f x)} \sqrt{\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}-\frac{2 a (a+2 b) \sin (e+f x)}{3 b^2 f (a+b)^2 \sqrt{\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}+\frac{2 (a+2 b) \left (-a \sin ^2(e+f x)+a+b\right ) E\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right )}{3 b^2 f (a+b)^2 \sqrt{\cos ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}} \sqrt{\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}-\frac{a \sin (e+f x)}{3 b f (a+b) \left (-a \sin ^2(e+f x)+a+b\right ) \sqrt{\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}} \]

[Out]

(-2*a*(a + 2*b)*Sin[e + f*x])/(3*b^2*(a + b)^2*f*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)]) - (a*Sin[e +
 f*x])/(3*b*(a + b)*f*(a + b - a*Sin[e + f*x]^2)*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)]) + (2*(a + 2*
b)*EllipticE[ArcSin[Sin[e + f*x]], a/(a + b)]*(a + b - a*Sin[e + f*x]^2))/(3*b^2*(a + b)^2*f*Sqrt[Cos[e + f*x]
^2]*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)]) - (EllipticF[ArcSin[
Sin[e + f*x]], a/(a + b)]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])/(3*b*(a + b)*f*Sqrt[Cos[e + f*x]^2]*Sqrt[Sec[e
 + f*x]^2*(a + b - a*Sin[e + f*x]^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.636959, antiderivative size = 383, normalized size of antiderivative = 1.19, number of steps used = 10, number of rules used = 10, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {4148, 6722, 1974, 414, 527, 524, 426, 424, 421, 419} \[ -\frac{2 a (a+2 b) \sin (e+f x) \sqrt{a \cos ^2(e+f x)+b}}{3 b^2 f (a+b)^2 \sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a+b \sec ^2(e+f x)}}+\frac{2 (a+2 b) \sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a \cos ^2(e+f x)+b} E\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right )}{3 b^2 f (a+b)^2 \sqrt{\cos ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}} \sqrt{a+b \sec ^2(e+f x)}}-\frac{a \sin (e+f x) \sqrt{a \cos ^2(e+f x)+b}}{3 b f (a+b) \left (-a \sin ^2(e+f x)+a+b\right )^{3/2} \sqrt{a+b \sec ^2(e+f x)}}-\frac{\sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}} \sqrt{a \cos ^2(e+f x)+b} F\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right )}{3 b f (a+b) \sqrt{\cos ^2(e+f x)} \sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^5/(a + b*Sec[e + f*x]^2)^(5/2),x]

[Out]

-(a*Sqrt[b + a*Cos[e + f*x]^2]*Sin[e + f*x])/(3*b*(a + b)*f*Sqrt[a + b*Sec[e + f*x]^2]*(a + b - a*Sin[e + f*x]
^2)^(3/2)) - (2*a*(a + 2*b)*Sqrt[b + a*Cos[e + f*x]^2]*Sin[e + f*x])/(3*b^2*(a + b)^2*f*Sqrt[a + b*Sec[e + f*x
]^2]*Sqrt[a + b - a*Sin[e + f*x]^2]) + (2*(a + 2*b)*Sqrt[b + a*Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]],
 a/(a + b)]*Sqrt[a + b - a*Sin[e + f*x]^2])/(3*b^2*(a + b)^2*f*Sqrt[Cos[e + f*x]^2]*Sqrt[a + b*Sec[e + f*x]^2]
*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)]) - (Sqrt[b + a*Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], a/(a + b)
]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])/(3*b*(a + b)*f*Sqrt[Cos[e + f*x]^2]*Sqrt[a + b*Sec[e + f*x]^2]*Sqrt[a
+ b - a*Sin[e + f*x]^2])

Rule 4148

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2), x
], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] &&  !IntegerQ
[p]

Rule 6722

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]), Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] &
& BinomialQ[v, x] &&  !LinearQ[v, x]

Rule 1974

Int[(u_)^(p_.)*(v_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{p, q}, x] &&
 BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  !BinomialMatchQ[{u, v}, x]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sec ^5(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right )^3 \left (a+\frac{b}{1-x^2}\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \left (b+a \left (1-x^2\right )\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \left (a+b-a x^2\right )^{5/2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}-\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{-a-3 b-a x^2}{\sqrt{1-x^2} \left (a+b-a x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{3 b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}-\frac{2 a (a+2 b) \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b^2 (a+b)^2 f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}+\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{(a+b) (2 a+3 b)-2 a (a+2 b) x^2}{\sqrt{1-x^2} \sqrt{a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 (a+b)^2 f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}-\frac{2 a (a+2 b) \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b^2 (a+b)^2 f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}-\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{3 b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}+\frac{\left (2 (a+2 b) \sqrt{b+a \cos ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b-a x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 (a+b)^2 f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}-\frac{2 a (a+2 b) \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b^2 (a+b)^2 f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}+\frac{\left (2 (a+2 b) \sqrt{b+a \cos ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{a x^2}{a+b}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 (a+b)^2 f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}}-\frac{\left (\sqrt{b+a \cos ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1-\frac{a x^2}{a+b}}} \, dx,x,\sin (e+f x)\right )}{3 b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \left (a+b-a \sin ^2(e+f x)\right )^{3/2}}-\frac{2 a (a+2 b) \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{3 b^2 (a+b)^2 f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}+\frac{2 (a+2 b) \sqrt{b+a \cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right ) \sqrt{a+b-a \sin ^2(e+f x)}}{3 b^2 (a+b)^2 f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}}-\frac{\sqrt{b+a \cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right ) \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}}{3 b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 2.81984, size = 167, normalized size = 0.52 \[ \frac{\sec ^5(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (\sqrt{2} (a+b)^2 \left (\frac{a \cos (2 (e+f x))+a+2 b}{a+b}\right )^{3/2} \left (2 (a+2 b) E\left (e+f x\left |\frac{a}{a+b}\right .\right )-b \text{EllipticF}\left (e+f x,\frac{a}{a+b}\right )\right )-2 a \sin (2 (e+f x)) \left (a^2+a (a+2 b) \cos (2 (e+f x))+5 a b+5 b^2\right )\right )}{24 b^2 f (a+b)^2 \left (a+b \sec ^2(e+f x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^5/(a + b*Sec[e + f*x]^2)^(5/2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^5*(Sqrt[2]*(a + b)^2*((a + 2*b + a*Cos[2*(e + f*x)])/(a + b))^(3/
2)*(2*(a + 2*b)*EllipticE[e + f*x, a/(a + b)] - b*EllipticF[e + f*x, a/(a + b)]) - 2*a*(a^2 + 5*a*b + 5*b^2 +
a*(a + 2*b)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)]))/(24*b^2*(a + b)^2*f*(a + b*Sec[e + f*x]^2)^(5/2))

________________________________________________________________________________________

Maple [C]  time = 0.614, size = 14357, normalized size = 44.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(5/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{5}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^5/(b*sec(f*x + e)^2 + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{5}}{b^{3} \sec \left (f x + e\right )^{6} + 3 \, a b^{2} \sec \left (f x + e\right )^{4} + 3 \, a^{2} b \sec \left (f x + e\right )^{2} + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e)^2 + a)*sec(f*x + e)^5/(b^3*sec(f*x + e)^6 + 3*a*b^2*sec(f*x + e)^4 + 3*a^2*b*sec(
f*x + e)^2 + a^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{5}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**5/(a+b*sec(f*x+e)**2)**(5/2),x)

[Out]

Integral(sec(e + f*x)**5/(a + b*sec(e + f*x)**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{5}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^5/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)^5/(b*sec(f*x + e)^2 + a)^(5/2), x)